【攻防世界】Crypto系列之初识RSA

【攻防世界】Crypto系列之初识RSA

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from Crypto.Util.number import bytes_to_long,inverse,getPrime
from flag import flag

m = bytes_to_long(flag)

p = getPrime(1024)
q = getPrime(1024)
n = p*q
print(n)
e = 65537

c = pow(m,e,n)

pq = p*(q-1)
qp = q*(p-1)

print("c=",c)
print("n=",n)
print("pq=",pq)
print("qp=",qp)
print(qp*pq)

'''
c= 8722269075970644434253339592758512788160408912707387632591552130175707843950684315083250494010055435391879036285103810263591951437829414438640307561645721347859659807138051841516634704123100270651976676182059252251162982609391666023674158274992400910869692389001622774140191223807887675081808561012755545464977015973615407965906513878979919700065923364884766974187303774330319143647840846354404070430118235352622445115153298578370521811697710289716188726587743282814946239856766713516166990341116198180068191759095913957606379780234116317390622824096667107736103270907349927467971817639795094030622157581511033950777
n= 10466186506773626671397261081802640650185744558208505628349249045496105597268556020207175016523119333667851114848452038431498926527983706092607207796937431312520131882751891731564121558651246025754915145600686076505962750195353958781726515647847167067621799990588328894365930423844435964506372428647802381074584935050067254029262890188260006596141011807724688556673520261743199388391094490191001701011230322653422314758778116196105077883955436582364267530633358016652912054880813710531145973799193443828969535902856467548523653920307742364119002349899553478815101092655897400295925170383678499125295006364960124859003
pq= 10466186506773626671397261081802640650185744558208505628349249045496105597268556020207175016523119333667851114848452038431498926527983706092607207796937431312520131882751891731564121558651246025754915145600686076505962750195353958781726515647847167067621799990588328894365930423844435964506372428647802381074488896197029704465200125337817646702009123916866455067019234171839614862660036737875747177391796376553159880972782837853473250804807544086701088829096838316550146794766718580877976153967582795248676367265069623900208276878140709691073369415161936376086988069213820933152601453587292943483693378833664901178324
qp= 10466186506773626671397261081802640650185744558208505628349249045496105597268556020207175016523119333667851114848452038431498926527983706092607207796937431312520131882751891731564121558651246025754915145600686076505962750195353958781726515647847167067621799990588328894365930423844435964506372428647802381074475956379708898904933143429835002718457573266164923043251954374464149976302585916538814746811455883837138715445492053610047383292461097590195481556557381952895539341802954749542143253491617052100969586396996063822508764438280468492894012685918249843558593322831683872737943676955669923498182824352081785243246
'''


对这个代码肯定不陌生,这就是一个RSA算法,但和前面的一道baigeiRS题目些许不一样的地方是这道题的数非常大,如果还用yafu工具去对n进行因式分解的话,我试了一下直接奔溃退出,所以还得从代码层面来解

我们来看下面三行代码,这是关键切入点

1
2
3
pq = p*(q-1)
qp = q*(p-1)
n = q*p

根据欧拉函数定义可得

1
oula= qp* pq//n=(q-1)*(p-1)

然后再根据欧拉函数计算得出e的逆向d

1
d = inverse(e,oula)

最后对c进行解密

1
m = pow(c,d,n)

得出原来的明文数据为

1
56006392793406543237791987142417311294065929320140616629889216443512551772328106378173698666811961469

这里还需要调用long_to_bytes函数将数字转换为字符串

1
flag{719014b3-c4e1-4f81-a7be-b4f0d65c9e10}
打赏
  • 版权声明: 本博客所有文章除特别声明外,著作权归作者所有。转载请注明出处!
  • Copyrights © 2021-2024 John Doe
  • 访问人数: | 浏览次数:

让我给大家分享喜悦吧!

微信